Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(13): eade7880, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000873

RESUMO

Three-dimensional bioprinting has emerged as a promising tool for spatially patterning cells to fabricate models of human tissue. Here, we present an engineered bioink material designed to have viscoelastic mechanical behavior, similar to that of living tissue. This viscoelastic bioink is cross-linked through dynamic covalent bonds, a reversible bond type that allows for cellular remodeling over time. Viscoelastic materials are challenging to use as inks, as one must tune the kinetics of the dynamic cross-links to allow for both extrudability and long-term stability. We overcome this challenge through the use of small molecule catalysts and competitors that temporarily modulate the cross-linking kinetics and degree of network formation. These inks were then used to print a model of breast cancer cell invasion, where the inclusion of dynamic cross-links was found to be required for the formation of invasive protrusions. Together, we demonstrate the power of engineered, dynamic bioinks to recapitulate the native cellular microenvironment for disease modeling.


Assuntos
Bioimpressão , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Hidrogéis/química , Engenharia Tecidual/métodos , Bioimpressão/métodos , Impressão Tridimensional
2.
Sci Rep ; 12(1): 4755, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35306515

RESUMO

The IEEE and ICNIRP had specified a maximum permissible exposure for instantaneous peak electric field of 100 kV/m. However, no rationale was given for this limit. A novel exposure system was designed through a detailed process of analytical analysis, numerical modelling and prototype testing. The system consists of a cylindrical re-entrant resonant cavity that can achieve an electric field strength of more than 100 kV/m with an input power of 200 W. The working of the system was evaluated in simulation and experiment in terms of scattering parameters, electric field distributions and specific absorption rate. The system was then used to carry out in-vitro exposures of a human lymphoid cell line (GG0257) to a 1195 MHz signal at 53 dBm peak power and a pulse width of 550 ns at a range of interpulse intervals to identify heating-induced changes in cell viability. The proposed system offers high Q value of 5920 in unloaded condition which was reduced to 57 when loaded with 12 ml of cell culture but still offering 67 kV/m of the field intensity. Using the system for the exposure of GG0257 cells lasting 18 min, interpulse intervals of 11 µs or less caused a reduction in the number of viable cells and a corresponding increase in necrotic cells. For a shorter exposure duration of 6 min, the reduction in cell viability was seen at interpulse intervals of 5.5 µs or less. The designed exposure system is well capable of handling high intensity electric fields. Temperature measurements with a fibre optic probe and temperature sensitive labels showed that changes in viability were associated with temperature increases above 46 °C. This novel exposure system is an efficient means to investigate the possible relationship between peak field intensity and biological effects to provide a rationale behind the maximum exposure limit of 100 kV/m.


Assuntos
Técnicas de Cultura de Células , Eletricidade , Sobrevivência Celular , Simulação por Computador , Campos Eletromagnéticos , Humanos , Temperatura
3.
Adv Funct Mater ; 31(7)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33613150

RESUMO

Three-dimensional (3D) bioprinting is a promising technology to produce tissue-like structures, but a lack of diversity in bioinks is a major limitation. Ideally each cell type would be printed in its own customizable bioink. To fulfill this need for a universally applicable bioink strategy, we developed a versatile, bioorthogonal bioink crosslinking mechanism that is cell compatible and works with a range of polymers. We term this family of materials UNIversal, Orthogonal Network (UNION) bioinks. As demonstration of UNION bioink versatility, gelatin, hyaluronic acid (HA), recombinant elastin-like protein (ELP), and polyethylene glycol (PEG) were each used as backbone polymers to create inks with storage moduli spanning 200 to 10,000 Pa. Because UNION bioinks are crosslinked by a common chemistry, multiple materials can be printed together to form a unified, cohesive structure. This approach is compatible with any support bath that enables diffusion of UNION crosslinkers. Both matrix-adherent human corneal mesenchymal stromal cells and non-matrix-adherent human induced pluripotent stem cell-derived neural progenitor spheroids were printed with UNION bioinks. The cells retained high viability and expressed characteristic phenotypic markers after printing. Thus, UNION bioinks are a versatile strategy to expand the toolkit of customizable materials available for 3D bioprinting.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32411691

RESUMO

Human tissues, both in health and disease, are exquisitely organized into complex three-dimensional architectures that inform tissue function. In biomedical research, specifically in drug discovery and personalized medicine, novel human-based three-dimensional (3D) models are needed to provide information with higher predictive value compared to state-of-the-art two-dimensional (2D) preclinical models. However, current in vitro models remain inadequate to recapitulate the complex and heterogenous architectures that underlie biology. Therefore, it would be beneficial to develop novel models that could capture both the 3D heterogeneity of tissue (e.g., through 3D bioprinting) and integrate vascularization that is necessary for tissue viability (e.g., through culture in tissue-on-chips). In this proof-of-concept study, we use elastin-like protein (ELP) engineered hydrogels as bioinks for constructing such tissue models, which can be directly dispensed onto endothelialized on-chip platforms. We show that this bioprinting process is compatible with both single cell suspensions of neural progenitor cells (NPCs) and spheroid aggregates of breast cancer cells. After bioprinting, both cell types remain viable in incubation for up to 14 days. These results demonstrate a first step toward combining ELP engineered hydrogels with 3D bioprinting technologies and on-chip platforms comprising vascular-like channels for establishing functional tissue models.

5.
Toxicol Lett ; 325: 67-76, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32017982

RESUMO

Racemic 3-quinuclidinyl-α-methoxydiphenylacetate (MB266) was synthesised. Its activity at muscarinic acetylcholine receptors (mAChRs), and muscle and neuronal nicotinic acetylcholine receptors (nAChRs), was compared to that of atropine and racemic 3-quinucidinyl benzilate (QNB) using a functional assay based on agonist-induced elevation of intracellular calcium ion concentration in CN21, Chinese Hamster Ovary (CHO) and SHSY5Y human cell lines. MB266 acted as an antagonist at acetylcholine receptors, displaying 18-fold selectivity for mAChR versus nAChR (compared to the 15,200-fold selectivity observed for QNB). Thus O-methylation of QNB reduced the affinity for mAChR antagonism and increased the relative potency at both muscle and neuronal nAChRs. Despite MB266 having a pharmacological profile potentially useful for the treatment of anticholinesterase poisoning, its administration did not improve the neuromuscular function in a soman-poisoned guinea-pig diaphragm preparation pretreated with the organophosphorus nerve agent soman. Consideration should be given to exploring the potential of MB266 for possible anticonvulsant action in vitro as part of a multi-targeted ligand approach.


Assuntos
Antídotos/farmacologia , Antídotos/uso terapêutico , Inibidores da Colinesterase/intoxicação , Antagonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/uso terapêutico , Agentes Neurotóxicos/intoxicação , Antagonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/uso terapêutico , Animais , Anticonvulsivantes/química , Anticonvulsivantes/uso terapêutico , Antídotos/síntese química , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Diafragma/efeitos dos fármacos , Cobaias , Humanos , Técnicas In Vitro , Masculino , Antagonistas Muscarínicos/síntese química , Músculo Esquelético/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Antagonistas Nicotínicos/síntese química , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Soman/intoxicação
6.
Toxicol Lett ; 321: 21-31, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31830555

RESUMO

Nerve agents inhibit acetylcholinesterase (AChE), leading to a build-up of acetylcholine (ACh) and overstimulation at cholinergic synapses. Current post-exposure nerve agent treatment includes atropine to treat overstimulation at muscarinic synapses, a benzodiazepine anti-convulsant, and an oxime to restore the function of AChE. Aside from the oxime, the components do not act directly to reduce the overstimulation at nicotinic synapses. The false transmitters acetylmonoethylcholine (AMECh) and acetyldiethylcholine (ADECh) are analogs of ACh, synthesised similarly at synapses. AMECh and ADECh are partial agonists, with reduced activity compared to ACh, so it was hypothesised the false transmitters could reduce overstimulation. Synthetic routes to AMECh and ADECh, and their precursors, monoethylcholine (MECh) and diethylcholine (DECh), were devised, allowing them to be produced easily on a laboratory-scale. The mechanism of action of the false transmitters was investigated in vitro. AMECh acted as a partial agonist at human muscarinic (M1 and M3) and muscle-type nicotinic receptors, and ADECh was a partial agonist only at certain muscarinic subtypes. Their precursors acted as antagonists at muscle-type nicotinic, but not muscarinic receptors. Administration of MECh and DECh improved neuromuscular function in the soman-exposed guinea-pig hemi-diaphragm preparation. False transmitters may therefore help reduce nerve agent induced overstimulation at cholinergic synapses.


Assuntos
Acetilcolina/análogos & derivados , Antídotos/farmacologia , Colina/análogos & derivados , Inibidores da Colinesterase/intoxicação , Diafragma/inervação , Agentes Neurotóxicos/intoxicação , Neurotransmissores/farmacologia , Intoxicação por Organofosfatos/tratamento farmacológico , Soman/intoxicação , Sinapses/efeitos dos fármacos , Acetilcolina/síntese química , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Acetilcolinesterase/metabolismo , Animais , Antídotos/síntese química , Células CHO , Linhagem Celular Tumoral , Colina/síntese química , Colina/farmacologia , Cricetulus , Agonismo Parcial de Drogas , Cobaias , Humanos , Masculino , Neurotransmissores/síntese química , Intoxicação por Organofosfatos/enzimologia , Intoxicação por Organofosfatos/fisiopatologia , Receptores Colinérgicos/efeitos dos fármacos , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Sinapses/enzimologia
7.
Acta Biomater ; 95: 225-235, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096043

RESUMO

Stem cells have great potential in regenerative medicine, with neural progenitor cells (NPCs) being developed as a therapy for many central nervous system diseases and injuries. However, one limitation to the clinical translation of stem cells is the resource-intensive, two-dimensional culture protocols required for biomanufacturing a clinically-relevant number of cells. This challenge can be overcome in an easy-to-produce and cost-effective 3D platform by bioprinting NPCs in a layered lattice structure. Here we demonstrate that alginate biopolymers are an ideal bioink for expansion lattices and do not require chemical modifications for effective NPC expansion. Alginate bioinks that are lightly crosslinked prior to printing can shield printed NPCs from potential mechanical damage caused by printing. NPCs within alginate expansion lattices remain in a stem-like state while undergoing a 2.5-fold expansion. Importantly, we demonstrate the ability to efficiently remove NPCs from printed lattices for future down-stream use as a cell-based therapy. These results demonstrate that 3D bioprinting of alginate expansion lattices is a viable and economical platform for NPC expansion that could be translated to clinical applications.


Assuntos
Bioimpressão/métodos , Células-Tronco Neurais/citologia , Alginatos/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Humanos , Hidrogéis/farmacologia , Tinta , Ligantes , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fenótipo
8.
Adv Mater ; 30(22): e1705215, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29682801

RESUMO

Injectable and biocompatible hydrogels have become increasingly important for cell transplantation to provide mechanical protection of cells during injection and a stable scaffold for cell adhesion post-injection. Injectable hydrogels need to be easily pushed through a syringe needle and quickly recover to a gel state, thus generally requiring noncovalent or dynamic cross-linking. However, a dilemma exists in the design of dynamic hydrogels: hydrogels with fast exchange of cross-links are easier to eject using less force, but lack long-term stability; in contrast, slow exchange of cross-links improves stability, but compromises injectability and thus the ability to protect cells under flow. A new concept to resolve this dilemma using a biocompatible catalyst to modulate the dynamic properties of hydrogels at different time points of application to have both high injectability and high stability is presented. Hyaluronic acid based hydrogels are formed through dynamic covalent hydrazone cross-linking in the presence of a biocompatible benzimidazole-based catalyst. The catalyst accelerates the formation and exchange of hydrazone bonds, enhancing injectability, but rapidly diffuses away from the hydrogel after injection to retard the exchange and improve the long-term stability for cell culture.


Assuntos
Ácido Hialurônico/química , Materiais Biocompatíveis , Adesão Celular , Hidrogéis , Fenômenos Mecânicos
9.
R Soc Open Sci ; 2(1): 140160, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26064575

RESUMO

We show that the physiological activity of solid aerosolized benzylidenemalononitriles (BMNs) including 'tear gas' (CS) in historic human volunteer trials correlates with activation of the human transient receptor potential ankyrin 1 ion channel (hTRPA1). This suggests that the irritation caused by the most potent of these compounds results from activation of this channel. We prepared 50 BMNs and measured their hTRPA1 agonist potencies. A mechanism of action consistent with their physiological activity, involving their dissolution in water on contaminated body surfaces, cell membrane penetration and reversible thiolation by a cysteine residue of hTRPA1, supported by data from nuclear magnetic resonance experiments with a model thiol, explains the structure-activity relationships. The correlation provides evidence that hTRPA1 is a receptor for irritants on nociceptive neurons involved in pain perception; thus, its activation in the eye, nose, mouth and skin would explain the symptoms of lachrymation, sneezing, coughing and stinging, respectively. The structure-activity results and the use of the BMNs as pharmacological tools in future by other researchers may contribute to a better understanding of the TRPA1 channel in humans (and other animals) and help facilitate the discovery of treatments for human diseases involving this receptor.

10.
Hum Exp Toxicol ; 30(7): 701-24, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20621953

RESUMO

The increasing threat from terrorism has brought attention to the possible use of toxic industrial compounds (TICs) and other lung-damaging agents as weapons against civilian populations. The way in which these agents could be used favours the development of generic countermeasures. Improved medical countermeasures would increase survivability and improve the quality of recovery of lung damaged casualties. It is evident that there is a dearth of therapeutic regimes available to treat those forms of lung damage that currently require intensive care management. It is quite possible that mass casualties from a terrorist incident or major industrial accident involving the release of large quantities of inhaled TICs would place a severe burden on already scarce intensive care facilities. The development of effective pharmacological approaches to assist the recovery of casualties suffering from acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) may improve the prognosis of such patients (which is currently poor) and would ideally be used as a means of preventing subjects from developing the pulmonary oedema characteristic of ALI/ARDS. Many promising candidate pharmacological treatments have been evaluated for the treatment of ALI/ARDS, but their clinical value is often debatable. Thus, despite improvements in ventilation strategies, pharmacological intervention for ALI/ARDS remains problematical. A new approach is clearly required for the treatment of patients with severely compromised lungs. Whilst the pathology of ALI/ARDS associated with exposure to a variety of agents is complex, numerous experimental studies suggest that generic therapeutic intervention directed at approaches that aim to upregulate repair of the damaged alveolar blood/air barrier of the lung may be of value, particularly with respect to chemical-induced injury. To this end, keratinocyte growth factor (KGF), epithelial growth factor (EGF) and basic fibroblast growth factor (bFGF) are emerging as the most important candidates. Hepatocyte growth factor (HGF) does not have epithelial specificity for lung tissue. However, the enhanced effects of combinations of growth factors, such as the synergistic effect of HGF upon vascular endothelial growth factor (VEGF)-mediated endothelial cell activity, and the combined effect of HGF and KGF in tissue repair should be investigated, particularly as the latter pair of growth factors are frequently implicated in processes associated with the repair of lung damage. Synergistic interactions also occur between trefoil factor family (TFF) peptides and growth factors such as EGF. TFF peptides are most likely to be of value as a short term therapeutic intervention strategy in stimulating epithelial spreading activities which allow damaged mucosal surfaces to be rapidly covered by epithelial cells.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/terapia , Substâncias para a Guerra Química/toxicidade , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Humanos , Exposição por Inalação , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/patologia , Edema Pulmonar/terapia , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/patologia
11.
J Appl Toxicol ; 28(5): 665-73, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18069744

RESUMO

As part of an ongoing programme on medical countermeasures against the chemical warfare agent sulphur mustard (HD) and set against the background of the involvement of matrix metalloproteinases (MMPs) in the pathology of HD-induced vesication processes, the potentially beneficial effects of doxycycline on cell attachment was determined in confluent HaCaT cell cultures exposed to HD. Doxycycline was found to inhibit to a significant extent the tendency of HD-exposed cells to detach from the growth substrate, however, analysis of the metabolic activity of the adherent cells indicated that doxycycline treatment did not maintain cell viability. It was confirmed that apoptosis was the predominant mode of HD-induced cell death. The results suggested that doxycycline and other MMP inhibitors may have a role to play in therapeutic intervention against HD exposure, but only as part of a combination therapy. The specific value of protease inhibitors in this capacity remains to be determined.


Assuntos
Antibacterianos/farmacologia , Substâncias para a Guerra Química/toxicidade , Doxiciclina/farmacologia , Queratinócitos/efeitos dos fármacos , Gás de Mostarda/toxicidade , Contagem de Células , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Corantes , Citometria de Fluxo , Violeta Genciana , Humanos , Queratinócitos/metabolismo , Queratinócitos/ultraestrutura , Microscopia de Contraste de Fase , Sais de Tetrazólio , Tiazóis
12.
Proc Natl Acad Sci U S A ; 102(20): 7280-7285A, 2005 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-15883370

RESUMO

A duplex 21 nucleotide small interfering RNA (siRNA) against human Keap1 is described that represents a unique class of cancer chemopreventive agent. This siRNA can knockdown Keap1 mRNA and thereby relieve negative regulation of nuclear factor erythroid 2 p45-related factor 2 (Nrf2)-mediated gene expression. The siRNA lowered endogenous Keap1 mRNA to <30% of control levels between 24 and 72 h after transfection in human HaCaT keratinocyte cells and was capable of blocking ectopic expression of FLAG-tagged human Keap1 protein but not that of ectopic V5-tagged mouse Keap1 protein. Transfection of human HaCaT cells with Keap1 siRNA markedly enhanced endogenous levels of nuclear factor erythroid 2 p45-related factor 2 (Nrf2) protein and increased transcription of an antioxidant response element-driven reporter gene by 2.3-fold. Furthermore, 48 h after transfection of these cells with Keap1 siRNA, expression of aldo-keto reductase 1C1/2 and the glutamate cysteine ligase catalytic and modifier subunits was elevated between 5- and 14-fold. A modest increase of 3-fold in NAD(P)H:quinone oxidoreductase 1 was also observed. The Keap1 siRNA produced a 1.75-fold increase in intracellular glutathione 48 h after transfection. Thus, antagonism of Keap1 by siRNA can be used to preadapt human cells to oxidative stress without the need to expose them to redox stressors.


Assuntos
Quimioprevenção , Regulação Neoplásica da Expressão Gênica , Neoplasias/prevenção & controle , Proteínas/antagonistas & inibidores , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Oxirredutases do Álcool/metabolismo , Aldeído Redutase , Aldo-Ceto Redutases , Western Blotting , Células Cultivadas , Primers do DNA , Proteínas de Ligação a DNA/metabolismo , Genes Reporter/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteína 1 Associada a ECH Semelhante a Kelch , Luciferases , Fator 2 Relacionado a NF-E2 , Plasmídeos/genética , Proteínas/metabolismo , Quinona Redutases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transativadores/metabolismo , Transfecção
13.
J Appl Toxicol ; 25(2): 115-28, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15747377

RESUMO

The ability of sulphur mustard (HD) to induce DNA damage places limits on the efficacy of approaches aimed at protecting human cells from the cytotoxic effects of HD using a variety of protective agents such as thiol-containing esters and protease inhibitors. In the present study, potential alternative strategies were investigated by examining the differential effects of HD on G361, SVK14, HaCaT and NCTC 2544 human skin cells. The G361 cell line was more resistant to the cytotoxic effects of HD than the NCTC, HaCaT and SVK14 cell lines at HD doses of >3 and <100 microM HD as determined by the MTT assay. At 72 h after exposure to 60 microM HD there was up to an 8.8-fold difference (P < 0.0001) between G361 and SVK14 cell culture viability. Buthionine sulphoximine (BSO) pretreatment increased the sensitivity of all four cell lines to HD. A substantial proportion of the resistance of G361 cells to HD was attributable to BSO-mediated effects on antioxidant-mediated metabolism, although G361 cultures still retained a high degree of viability at 30 microM HD following BSO pretreatment. Cell cycle analysis confirmed that SVK14 cells were relatively more sensitive to HD, as shown by the 2.1-fold reduction (P < 0.0001) in the percentage of cells in G0/G1 phase 24 h after HD exposure compared with control cultures. This compared well with a 1.2-fold increase (P < 0.05) in the percentage of G361 cells in G0/G1 phase following HD exposure, suggesting the existence of a more efficient G0/G1 checkpoint control mechanism in this cell line. Manipulation of the cell cycle using various modulating agents did not increase the resistance of cell lines to the cytotoxic effects of HD.


Assuntos
Substâncias para a Guerra Química/farmacologia , Gás de Mostarda/farmacologia , Pele/citologia , Butionina Sulfoximina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Glutationa/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Sensibilidade e Especificidade
14.
J Appl Toxicol ; 24(1): 37-46, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14745845

RESUMO

The aim of this study was to provide information about the degradative processes that occur in major connective tissue components in skin following exposure of large white pigs to Lewisite vapour. Of particular interest were alterations in glycoproteins, which are known to mediate dermo-epidermal attachment (laminin and type IV collagen) and the main collagen found in the dermis (type III collagen). The immunostaining of transfer blots from skin extracts run on sodium dodecyl sulphate polyacrylamide gel electrophoresis gels revealed no evidence of cross-linking of laminin or of type III or IV collagen. However, there was evidence of a very considerable degradation of laminin and, to a lesser extent, of type IV collagen. Type III collagen did not appear to be degraded in skin exposed to Lewisite. These degradative processes appeared to be more severe than found in previous studies in Yucatan mini-pigs percutaneously exposed to sulphur mustard, in which only laminin was found to undergo partial cleavage rather than wholesale degradation. The results suggest that damage to macromolecular components in the sub-epidermal basement membrane in skin which mediate dermo-epidermal separation processes may be a common feature in the mechanism of action of vesicating agents such as Lewisite and sulphur mustard. It is of interest that the damage to laminin in this study appeared to be more severe than that previously found for sulphur mustard. This suggests that skin can suffer substantial damage yet, in the case of Lewisite exposure, recover relatively quickly. However, Lewisite is not an alkylating agent. Sulphur mustard, in contrast, generates characteristically slow healing lesions, most probably because of its ability to alkylate cell types that normally would be involved in skin regenerative processes.


Assuntos
Arsenicais/efeitos adversos , Substâncias para a Guerra Química/efeitos adversos , Tecido Conjuntivo/efeitos dos fármacos , Proteínas da Matriz Extracelular/efeitos dos fármacos , Pele/efeitos dos fármacos , Suínos , Animais , Colágeno Tipo III/química , Colágeno Tipo III/efeitos dos fármacos , Colágeno Tipo III/metabolismo , Colágeno Tipo IV/química , Colágeno Tipo IV/efeitos dos fármacos , Colágeno Tipo IV/metabolismo , Tecido Conjuntivo/química , Tecido Conjuntivo/metabolismo , Eletroforese em Gel de Poliacrilamida , Proteínas da Matriz Extracelular/metabolismo , Laminina/química , Laminina/efeitos dos fármacos , Laminina/metabolismo , Pele/química , Pele/metabolismo , Volatilização
15.
Hum Exp Toxicol ; 22(11): 593-605, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14686482

RESUMO

The epithelial Madin Darby canine kidney (MDCK) cell line, Caucasian renal leiomyoblastoma (G-402) cells, human small airways epithelial (HSAE) cells, human bronchial epithelial (HBE) cells and human renal proximal tubule (HRPT) epithelial cells were examined for sensitivity to Clostridium perfringens biotype D epsilon-toxin. MDCK and G-402 cells were confirmed as being the only established cell lines that are sensitive to the toxin. HSAE, HBE and HRPT epithelial cells were only found to be sensitive to the toxin at concentrations of > 1 mg/ mL. Cultures of MDCK and G-402 cells, with increased resistance (tolerance) to the cytotoxic effects of epsilon-toxin, were developed by exposing these cultures to progressively higher concentrations of toxin. The greatest relative increase in tolerance to epsilon-toxin was developed in MDCK cells, in which the LC50 in control cultures was 2 microg/mL as determined by the MTS/PMS assay system; after selection for tolerance, this was raised to 100 microg/mL. This represents a 50-fold increase in tolerance as measured by this index. Using G-402 cells, it was possible to increase the LC50 by twofold from 290 to 590 microg/mL. Subsequent 2-D electrophoresis of membrane preparations from tolerant and control MDCK cells revealed that the expression of a discrete group of proteins found in control cells with a range of molecular weights from 32-36 kDa, all with acidic isoelectric points (IEPs), were either not expressed in epsilon-toxin tolerant cells or had undergone a shift in IEP to a more alkaline pH in tolerant cells. This suggests that epsilon-toxin lethality in MDCK cells may be mediated by membrane-located proteins. Their absence or alteration in toxin-resistant cells would, at least partly, explain the failure of most cell lines to demonstrate sensitivity to this toxin, despite being derived from tissues that are damaged by epsilon-toxin. This approach may have utility in the study of other toxin-cell interactions and could be used in the development of novel medical countermeasures by identifying cellular targets which mediate toxin lethality.


Assuntos
Toxinas Bacterianas/farmacologia , Toxinas Bacterianas/toxicidade , Proteínas de Membrana/fisiologia , Animais , Técnicas de Cultura de Células , Cães , Resistência a Medicamentos , Eletroforese em Gel Bidimensional , Humanos , Rim/citologia , Neoplasias Renais/patologia , Leiomioma Epitelioide/patologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...